
a) Discuss, giving your own opinion, the ideas contained in Edsger Dijkstra’s “On the Cruelty of

really teaching Computer Science”. [Marks 15]

http://en.wikipedia.org/wiki/On_the_Cruelty_of_Really_Teaching_Computer_Science

● The main idea argues that computer programming should be understood as a branch of

mathematics, and that the formal provability of a program is a major criterion for correctness.

● However, Since the term "software engineering" was coined, formal verification has almost

always been considered too resource-intensive to be feasible.

● In complex applications, the difficulty of correctly specifying what the program should do in the

first place is also a common source of error.

● The notion that the cost of production of hardware should be a constraint in programming was

foreign to Dijkstra and until the end of his life, Dijkstra maintained that the central challenges of

computing hadn’t been met to his satisfaction, due to an insufficient emphasis on program

correctness.

● I think that Computer Science as taught today does not follow all of Dijkstra's advice. Today’s

teachings generally emphasize techniques for managing complexity and preparing for future

changes eg. abstraction, programming by contract, and design patterns. Programming

techniques to avoid bugs and conventional software testing methods are taught as basic

requirements, and students are exposed to certain mathematical tools, but formal verification

methods are not included in the curriculum except perhaps as advanced topics. So in some ways,

Dijkstra's ideas have been adhered to; however, the ideas he felt most strongly about have not

been.

b) Give a summary of the main ideas in the paper “SLAM and Static Driver Verifier: Technology

Transfer of Formal Methods inside Microsoft” by Thomas Ball, Byron Cook, Vladimir Levin, and

Sriram K. Rajamani, and, based on the paper, discuss what are, in your opinion, the three most

important software engineering issues associated with technology transfer of formal methods?

[Marks 15]

Main Ideas

● Focus on Problems not Technology

○ It is easier to convince a product group to adopt a new solution to a pressing problem that

they already have in comparison to convincing them to adopt new technology if the link to

the problem that it solves is unclear.

● Exploit Synergies

○ It’s a great idea for people to cross the boundaries of their traditional research

communities to collaborate with people from other communities when trying to solve a

problem. Progress in research can be accelerated by following this recipe.

● Plan Carefully

○ To get maximum leverage in any research project, one has to plan in order to be

successful. It is crucial not to underestimate the value of such ground work.

● Reflect and Assess

○ In a research project that spans several years, it is important to regularly reassess the

progress you are making towards your main goal.

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematical_proof
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Program_correctness
http://en.wikipedia.org/wiki/Program_correctness
http://en.wikipedia.org/wiki/Abstraction_(computer_science)
http://en.wikipedia.org/wiki/Programming_by_contract
http://en.wikipedia.org/wiki/Design_pattern_(computer_science)

Most important software engineering issues associated with technology transfer of formal methods

●

c) A process, such as the Rational Unified Process or Larman’s Agile UP can be used to assist in

achieving a software implementation that satisfies the requirements of the system. A formal

method, such as program verification based on Floyd-Hoare Logic, can also be used to assist in

ensuring that a software implementation satisfies the requirements of the system. Discuss the use

of these two techniques, including in the discussion any differences and similarities, and

illustrating the discussion with particular application examples. [Marks 20]

● For more than a decade now, the two communities of UML and formal methods have been

working together to produce a simultaneously practical (via UML) and rigorous (via formal

methods) approach to software engineering.

● UML is the de facto standard for modelling various aspects of software systems in both industry

and academia, despite the inconvenience that its current specification is complex and its syntax

imprecise.

● The fact that the UML semantics is too informal have led many researchers to formalize it with all

kinds of existing formal languages in order to measure the correctness of computer programs.

//Rational Unified Process (Uses component-based architectures)

UML

● The Unified Modeling Language includes a set of graphic notation techniques to create visual

models of object-oriented software-intensive systems. The Unified Modeling Language is used

to specify, visualize, modify, construct and document the artifacts of an object-oriented

software-intensive system under development.

● For example, System Sequence Diagrams are regularly used within UML. Here the system

sequence diagram is used primarily to show the interactions between objects in the sequential

order that those interactions occur, and also to show possible inter-system events.

http://en.wikipedia.org/wiki/Visual_modeling
http://en.wikipedia.org/wiki/Visual_modeling
http://en.wikipedia.org/wiki/Artifact_(software_development)

Floyd-Hoare Logic

● Floyd–Hoare logic is a formal system with a set of logical rules for reasoning rigorously about the

correctness of computer programs.

● The central feature of Hoare logic is the Hoare triple. A triple describes how the execution of a

piece of code changes the state of the computation. A Hoare triple is of the form {P} C {Q} where

P and Q are assertions and C is a command. P is named the precondition and Q the

postcondition: when the precondition is met, the command establishes the postcondition.

● For example;

http://en.wikipedia.org/wiki/Formal_system
http://en.wikipedia.org/wiki/Correctness_of_computer_programs
http://en.wikipedia.org/wiki/Assertion_(computing)
http://en.wikipedia.org/wiki/Precondition
http://en.wikipedia.org/wiki/Postcondition

